
 
European J of Physics Education                        Vol. 3 Issue 3 2012    Dunlap 

 
 

 1 

The Symmetry and Packing Fraction of The Body Centered Tetragonal Structure 
 

Richard A. Dunlap 
 

Department of Physics and Atmospheric Science, College of Sustainability 
And Institute for Research in Materials 

Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 
Email: dunlap@fizz.phys.dal.ca 

 
 
 
Abstract  
It is shown that for different ratios of lattice parameters, c/a, the body centered tetragonal structure may be view as body 
centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry 
of a lattice depends on the choice of the conventional unit cell. 
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Introduction 
 
The packing of atoms in various crystal structures is a topic that appears in virtually all introductory 
solid state physics and crystallography text books (e.g. Ashcroft and Mermin (1996)). By viewing 
atoms as hard spheres it is straightforward to calculate the packing fraction for common crystal 
structures such as the simple cubic (0.524), the body centered cubic (0.680) and the face centered 
cubic (0.740) structures. It is sometimes through an analysis of the packing fraction that the 
interrelationship of different crystal structures becomes obvious. The utility of this approach has 
been discussed by Aziroff (1960). For example, the relationship between the hexagonal close 
packed (hcp) and face centered cubic (fcc) structures is well known (Kittel, 1996) as both maximize 
the packing fraction. The packing fraction of the body centered tetragonal (bct) structure provides 
interesting insight into the relationship of different crystal structures and emphasizes the point that 
the choice of non-primitive unit cells is not unique and does not always emphasize all of symmetry 
characteristics of the structure. The analysis of this structure provides a useful classroom example to 
introduce students to the concept of crystal symmetry and structure. 

 
Analysis of the body centered tetragonal structure 

 
The conventional unit cell of the body centered tetragonal structure is characterized by a lattice 
parameter a in the basal plane and a lattice parameter c in the z-direction. The packing fraction, f, of 
a crystal structure is defined as the maximum fraction of the volume of the structure that can be 
occupied by non-overlapping hard spheres. The packing fraction is thus given by the ratio of the 
volume of spheres, Vs, that can be accommodated within a unit cell to the total volume of the unit 
cell, Vc;  
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     f = Vs/Vc      (1) 
 
For the body centered tetragonal structure there are two spheres contained within the conventional 
unit cell and the packing fraction may be determined as a function of the ratio of the basal plane 
lattice parameter, a, and the z-axis lattice parameter, c, that is, c/a, from a geometrical consideration 
of the packing of hard spheres. Three distinct regimes need to be considered on the basis of 
constraints placed on the diameter of the spheres by the geometry of the crystal structure. For c/a 
< 3/2  the distance between the spheres is limited along the z-direction. The spheres along a unit 
cell edge touch along the z-direction leading to the constraint that the radius of the spheres, r, is 
given by 
 
     r = c/2       (1) 
 
Thus the total volume of two spheres within the unit cell will be  
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and for a unit cell volume of Vc = a2c, the packing fraction, is found to be 
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For the region 3/2  < c/a < 2  the distance between the spheres is limited along the body 
diagonal of the tetragonal cell. In this case the sphere radius is 1/4 of the body diagonal or 
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and the total sphere volume will be 
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Dividing by the cell volume and rearranging gives the packing fraction as 
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In the third regime c/a > 2  and the distance between the spheres is limited in the basal plane. Here 
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the radius will be one half of the basal plane lattice parameter or 
 
     r = a/2       (7) 
 
The total sphere volume will be 
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and the packing fraction is found to be 
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 As expected, the above functions match at the appropriate values of c/a giving f = 2π/9 at c/a = 
3/2  and f = 2 π/6 at c/a = 2 . The functions in equations (3), (6) and (9) are plotted as a 

function of (c/a) in Figure 1 over their appropriate ranges. Clearly, as anticipated, f → 0 as either c/a 
→ 0 or c/a → ∞. For intermediate values of c/a there are three situations as described below. 

 
Figure 1. Packing fraction, f, as a function of c/a for the body centered tetragonal structure. 

 
For a value of c/a = 3/2  there is a local maximum in the packing fraction. A section through 

the structure in the (110) plane is shown in Figure 2. The spheres in this plane are arranged in a simple 
hexagonal lattice. This simple two-dimensional hexagonal lattice forms the basis of both three 
dimensional close packed structures, the hexagonal close packed (hcp) structure and the face centered 
cubic (fcc) structure. The relationship of these structures is nicely illustrated by Figure 21 of Kittel 
(1996).  The hcp structure is represented by two dimensional hexagonal planes of atoms in the sequence 
ABABABAB..., indicating that the second plane of atoms resides over spaces between the atoms in the 
first plane and atoms in the third plane reside above atoms in the first plane (that is above spaces 
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between the second plane atoms).  The fcc structure is represented by two dimensional hexagonal 
planes of atoms in the sequence ABCABCABC..., indicating that the second plane of atoms resides 
over one set of spaces between the atoms in the first plane and atoms in the third plane reside over a 
second set of spaces between the atoms in the first plane.  In both cases, the placement of each plane of 
hexagonally arranged atoms over spaces which are the centers of equilateral triangles formed by atoms 
in the plane below will maximize the packing fraction.  

In the case of the bct structure with c/a = 3/2  the hexagonal planes as shown in Figure 2 
follow a sequence ABABAB... but are not shifted relative to each other as they are for the hcp 
structure.  Rather than residing above spaces that are the centers of triangles of three atoms, the 
second plane atoms lie above the center point of lines between two atoms in the plane below. 
The subsequent layer falls above the first layer giving a structure that (as for the hcp structure 
but without the close packing). The structure may, therefore, be thought of as a simple 
hexagonal structure with a basis of two atoms. In the figure it is seen that the basal plane lattice 
parameter for the hexagonal structure, ahex, is just the z-axis lattice parameter for the bct structure 
(c). A simple calculation shows that this simple hexagonal structure has the ratio (c/a)hex = 3  
and a calculated packing fraction of 2π/9, consistent with the value given by equations (3) and (6) 
and as shown in Figure 1. 

 
Figure 2. Hexagonal packing in the (110) plane of the bct structure for c/a = 3/2 . The unit cell of the bct 
structure in the (110) plane is shown by the solid rectangle. The location of a typical sphere in the next layer 

along the [110] direction is shown by the dashed circle. The dashed rhombus shows the basal plane of the 
simple hexagonal cell. 

 
For a value of c/a = 1, Figure 1 shows a local minimum in the packing fraction 

corresponding to the well-known body centered cubic (bcc) structure. From equation (6), the 
calculated packing fraction is found to be f = 3π/8 = 0.680.  

For a value of c/a = 2  there is a maximum in the packing fraction and the bct structure 
can be shown to be the same as the fcc structure. The (110) plane of the bct structure forms the 
(100) plane of an fcc structure with a lattice parameter given in terms of the bct lattice parameter 
afcc = c = 2 a. As illustrated in Figure 3, this is readily seen from an inspection of the spheres 
in the bct (001) plane (which remains the (001) plane for the fcc structure). The packing fraction 
from equation (6) is found to be c/a = 2π/6 = 0.740 as appropriate for the fcc structure. The bct 
structure has a basis of two atoms and the fcc structure has a basis of four atoms and this is clearly 
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illustrated by the differences in the volumes of the cells in terms of their lattice parameters as given 
above. 
 
 
 
 
 
 
 
 
 
Figure 3. The (001) plane of the bct structure with c/a = 2 . The solid square shows the bct unit cell and the 

dashed square shows the conventional unit cell of the fcc structure with a lattice parameter of 2 a. 
 

Discussion and Conclusions 

 From a practical standpoint the current discussion allows the crystal structure for certain materials to 
be viewed with some additional insight.  Elements are certainly the most obvious candidates for a real 
analysis of packing fractions as they are comprised of a single type of atom.  The majority of the 
elements have close packed structures (at room temperature), i.e. hcp or fcc or hcp.  The alkali metals 
have the bcc structure.  Some elements have more complex structures (Feng and Jin, 2005)) for an 
overview of the structure of the elements).  For the purpose of applying the concepts presented in the 
present manuscript, indium is an interesting example as it has the bct structure.  The measured lattice 
parameters of indium are a = 0.32530 nm and c = 0.49555 nm giving a ratio c/a=1.5234 (Generalic, 
2012)).  These values, combined with the atomic mass of indium and the appropriate number of two 
atoms per bct unit cell, are consistent with the measured density of indium, 7.31×103 kg/m3 (Wolfram 
Alpha (2012)).  The value of the c/a ratio as determined from lattice parameter measurements for 
indium places the structure in the bct regime described by equation (9), i.e. 1.5234 > 2 .  From this 
equation, the calculated packing fraction of indium will be f = 0.687, slightly greater than the value of 
0.680 for the bcc structure.  Thus the tetragonal distortion of the bcc structure, which increases c/a, has 
yielded an increased density for indium.   

The above analysis of the packing fraction of the bct structure shows the relationship of this 
structure to some other well-known structures for particular ratios of c/a. While packing fractions 
cannot exceed the value for the hcp and fcc structures, the current analysis illustrates that the 
packing fraction for the bct structure can exceed that of the bcc structure.  Figure 1 clearly shows 
that introducing a tetragonal distortion to the bcc structure, either by increasing or decreasing the 
c/a ratio, will increase the packing fraction. The current analysis also nicely demonstrates that our 
view of conventional unit cells is not unique and does not always properly emphasize all of the 
symmetry characteristics of the structure. For the correct ratio of c/a the bct structure is merely the fcc 
viewed using a different unit cell, i.e. a unit cell which is smaller than the conventional fcc unit cell but 
one which is still not a primitive cell (as it has two atoms per unit cell).  
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