МОДЕЛИРОВАНИЕ СТРУКТУРЫ НЕЙРОПЕПТИДОВ СЕМЕЙСТВА АЛЛАТОСТАТИНОВ

У.Т.АГАЕВА, М.А.МУСАЕВ, Л.И.ВЕЛИЕВА, И.Н.АЛИЕВА, Н.М. ГОДЖАЕВ*

Бакинский Государственный Университет Университет Кавказ*

Баку / АЗЕРБАЙДЖАН

Lala_Veliyeva@rambler.ru

РЕЗЮМЕ

В работе методами теоретического конформационного анализа и молекулярной динамики исследованы пространственная структура, конформационные свойства и подвижность боковых цепей молекул Leuгаллатостатина-4, дростатина-3, шистостатина-6 и аллатостатинов 1-4, принадлежащих семейству аллатостатинов.

Ключевые слова: нейропептиды; структура; конформационный анализ; молекулярная динамика

MODELING OF THE STRUCTURES OF ALLATOSTATIN FAMILY NEUROPEPTIDES

ABSTRACT

The spatial structure, conformational peculiarities and the side chains mobility of the Leu-callatostatin-4, drostatin-3, shistostatin-6 and allatostatins 1-4 allatostatin family neuropeptides had been investigated by the method of theoretical conformational analyses and molecular dynamics simulations.

Key words: neuropeptides; structure; conformational analyses; molecular dymanics

Введение

Одной из актуальных проблем современности является поиск и целенаправленный синтез соединений, используемых для регуляции численности вредителей сельскохозяйственных культур. К числу таких соединений относятся нейропептиды, синтезируемые нейросекреторными клетками мозга различных видов насекомых, в частности, Calliphora Vomitoria, Drosophilla melanogaster, Shistostocerca gregaria [1-3]. Нейропептиды ингибируют синтез и выделение ювенильных гормонов в процессе онтогенеза насекомых, участвуют в нейропередаче и регуляции функций нервной системы. Важнейшим аспектом в исследованиях функциональной активности нейропептидов является изучение молекулярных основ механизма их действия и создание эффективных аналогов этих соединений с пролонгированным эффектом действия. Целью настоящего исследования явилось изучение пространственной структуры, конформационных свойств и электроннодинамических характеристик нейропептидов-Leu галлатостатина-4, дростатина-3, шистотатина-6 и аллатостатинов 1-4, секретируемых нейросекреторными клетками мозга насекомых Calliphora Vomitoria, Drosophilla melanogaster, Shistostocerca gregaria. Молекулы Leu галлатостатина-4, дростатина-3 и шистотатина-6 являются октапептидами, содержат одинаковую последовательность аминокислотных остатков на участке 2-8 пептидной цепи и различаются лишь структурой аминокислотного остатка в положении 1 пептидной последовательности (рис.1). В работе проведен сопоставительный анализ результатов, полученных полуэмпирическими методами молекулярной механики и квантовой химии [4-7]. Динамические свойства нейропептидов изучались на основе метода молекулярной динамики. Все расчеты были проведены с помощью вычислительных компьютерных программ, апробированных на большом классе биологически активных соединений-антибиотиков, гормонов, полипептидов и белков.

Рис. 1. Аминокислотная последовательность и схема поэтапного расчета нейропептидов Leu галлатостатина-4, дростатина-3, шистотатина-6 и аллатостатина-4

Метод и Результаты Расчета

Моделирование структуры молекул проводилось методом теоретического конформационного анализа с учетом полярного окружения атомов на основе пакета прикладных компьютерных программ [8]. Используемые в работе полуэмпирические потенциальные функции и их параметризация были взяты из работы [4].

Пространственная структура молекул изучены на основе стабильных конформаций метиламидов N-ацетил-α-аминокислот с учетом различных ориентаций их боковых цепей. Поэтапный расчет пространственной структуры этих нейропептидов включал изучение конформационных состояний последовательно наращиваемых фрагментов согласно схеме, приведенной на рис.1.

Согласно результатам исследования нейропептиды-Leu галлатостатин-4, дростатин-3, шистотатин-6 обладают компактной пространственной структурой и содержат α-спиральный сегмент, включающий остатки Arg2-Pro3-Tyr4-Ser5-Phe6-Gly7-Leu8 (рис.2).

Рис.2. Структура молекулы дростатина-3 (а) и аллатостатина-1 (б) по данным теоретических расчетов

Низкоэнергетические конформационные состояния молекул нейропептидов стабилизированы водородными связями, в образовании которых участвуют атомы основной цепи остатков Arg2 и Ser5, а также функционально активные участки их боковых цепей (табл.1).

Нейро- пептиды	Водородная связь	Межа- томные	
		расстоя- ния (Å)	
	Asp1(CO)Arg2(HN)	2.61	
	Arg2(CO)Tyr4(HN)	2.80	
Leu галла-	Ser5(NH)Leu(OH)	2.55 2.93	
тостатин-4	Ser5(CO) Leu8(HN)		
	Phe(CO)Leu8(HN)	2.01	
	Ser1(NH)Ser1(OG)	2.48	
	Ser1(OGArg2(NH)	2.21	
Дрос-	Arg2(CO)Ser5(NH)	2.10	
татин-3	Arg2(CO)Phe6(NH)	2.39	
	Pro3(CO)Leu8(NH)	2.41	
	Phe6(CO)Leu8(NH)	2.02	
	Arg2(CO)Ser5(NH)	2.10	
Шисто-	Arg2(CO)Phe6(NH)	2.02	
татин-6	Pro3(CO)Leu8(NH)	2.46	
	Phe6(NH)Phe6(CO)	2.56	
	Phe6(CO)Leu8(NH)	2.07	
Аллатос-	Ala1(CO)Ser3(NH)	2.97	
татин-1	Ser3(NH)Leu8(CO)	3.98	
	Gly4(NH)Arg7(CO)	1.27	
	Gln(CO)Phe11(NH)	2.68	
	Tyr9(NH)Phe11(CO)	0.79	
	Gly10(NH)Leu13(CO)	2.31	
Аллатос-	Gly1(NH)Gly3(CO)	2.73	
татин-2	Asp2(NH)Leu5(CO0	2.11	
	Arg4(CO)Ala7(NH)	3.01	
	Gly3(CO)Gly9(NH)	1.98	
	Leu5(NH)Leu10(CO)	0.67	
	Tyr6(CO)Leu10(NH)	2.34	
Аллатос-	Gly1(CO)Ser(NH)	2.10	
татин-3	Ser3(OH)Tyr5(NH)	1.90	
	Leu4(NH)Gly8(CO)	2.78	
	Phe7(CO)Leu9(NH)	2.00	
	Asp1(CO)Arg2(HN)	2,83	
Аллатос-	Tyr4(CO)Gly7(HN)	2,75	
татин-4	Ser5(NH)Ser5(CO)	2,50	
	Phe6(CO)Leu8(NH)	2,12	

Таблица 1.	Водородные связи	нейропептидов Leu
	галлатостатина-4,	дростатина-3, шис-
	тотатина-6 и аллат	состатинов 1-4

Следует отметить, что именно остаток аргинина в положении 2 пептидной цепи образует максимально большое число внутримолекулярных контактов, в то время как алифатическая боковая цепь Leu8 ориентирована в сторону от пептидной цепи. Боковые цепи двух других остатков Туг4 и Phe6 также ориентированы в окружающую среду, поэтому можно утверждать, что молекулы нейропептиднов имеют гидрофобную оболочку, которая и будет определять их функциональную активность при взаимодействии с рецепторными участками белков.

Аллатостатины принадлежат семейству нейропептидов, пространственная структура которых была установлена на основе количественной оценки стабильности и пределов конформационной подвижности двугранных углов вращения в основной и боковых цепях составляющих молекулу аминокислотных остатков. Глобальный минимум конформационной энергии и равновесная геометрическая конфигурация молекул были найдены путем поиска стационарных точек на многомерной потенциальной поверхности исследуемых молекул (табл.2). Установлено, что в глобальной конформации участок пептидной цепи Leu8-Leu13 в аллатостатине 1 формирует βповорот, конформационная подвижность которого ограничена по сравнению с участком Ala1-Gln6 на N-конце пептидной молекулы.

Таблица 2.	Энергетические	вклады	глобал	іьных
	конформаций	нейропеп	тидов	Leu-
	галлатостатина-	4, дроста	гина-3,	шис-
	тотатина-6 и аллатостатинов 1-4			

Нейропептиды	Энергетические вклады (ккал/моль)			
	Енев	Еэл	Еторс	Еполн
Leu-галлатостатин-4	-48.34	2.49	5.26	-41.59
Дростатин-3	-45.23	3.66	3.07	-38.51
Шистотатин-6	-43.09	3.39	3.26	-35.86
Аллатостатин-1	-57.30	3.96	4.15	34.76
Аллатостатин-2	-44.81	3.70	3.60	-37.52
Аллатостатин-3	-47.53	2.76	2.85	-37.11
Аллатостатин-4	-44.30	3.00	4.30	-36.90

Полученные результаты были подтверждены также исследованием молекулярно-динамических свойств нейропептидов. Молекулярная динамика нейропептидов, проведенная в условиях вакуума и в водной среде в течение 30 пикосекунд, выявила устойчивость структур к действию молекул воды. Установлено, что нейропептиды сохраняют виток α-спирали и β-изгибы несмотря на образование большого числа межмолекулярных водородных связей с молекулами воды. Такие связи не вносят существенного вклада в энергию, однако они участвуют в дополнительной стабилизации пространственных структур нейропептидов. Наличие гидрофобной поверхности подтверждают результаты исследования распределения электронной плотности и молекулярного электростатического потенциала.

Полученные в данном исследовании результаты будут использованы для изучения зависимости структурных и электронно-динамических свойств нейропептидов с функциональными характеристиками и биологической ролью молекул в процессах ингибирования.

ЛИТЕРАТУРА

- 1. Lenz C., Williamson M. et al. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster // Biochemical and Biophysical Research Communications, 2000, v. 273, No.2, p. 571-577
- Hewes R.S., Taghert P.H. Neuropeptides and Neuropeptide Receptors in the *Drosophila melanogaster* Genome // Genome Res., 2001, v. 11, No. 6, p. 1126–1142
- Audsley N., Weaver R.J. et al. Juvenile hormone biosynthesis by corpora allata of larval tomato moth, Lacanobia oleracea, and regulation by Manduca sexta allatostatin and allatotropin // Insect Biochemistry and Molecular Biology, 2000, v. 30, No.8-9, p. 681-689
- 4. Momany F.A., McGuire R.F., Burgess A.W., Scheraga H.A. Energy parameters in polypeptides: Geometric parameters, partial atomic

charges, nonbonded interaction for naturally occuring amino acid // Phys. Chem., 1975, v.79, p.2361-2381

- IUPAC-IUB Quantity, Units and Symbols in *Physical* Chemistry, Blackwell Scientific Publications, Oxford, v. 39, 1988
- Balabaev N.K., Lemak A.S. Molecular dynamics simulation of ferredoxin in different electronic states. In: Laser Spectroscopy of Biomolecules, E.I. Korppi-Tommola, Ed., Proc. SPIE 1921, 1993, p.375-385
- Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. CHARMM: A program for macromolecular energy minimization, and dynamics calculations // J.Comput.Chemistry, 1983, v.4, No.2, p.187-217
- Максумов И.С., Исмаилова Л.И., Годжаев Н.М. Программа полуэмпирического расчета конформаций молекулярных комплексов на ЭВМ // Журнал структурной химии, 1983, т.24, №4, с.147-148.