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Abstract: This paper presents the performance of 11 ARCH-type models each with 
four different distributions combined with ARMA specifications in conditional mean 
in estimating and forecasting the volatility of IMKB 100 stock indices, using daily 
data over a 9 years period.  The results suggest that fractionally integrated asym-
metric models outperform the non-FI versions and, using skewed-t and student-t 
distributions provide better fit to the data for almost every model in estimating 
volatility. In forecasting volatility a clear improvement is not observed by altering a 
specific model component or distribution. 
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1. Introduction 
 
Until the 80’s most of the analytical research was on finding the relation between 
factors and outcomes. For this purpose it was a mostly used assumption for simplic-
ity that errors were random constants. The models that best represent relations were 
those that produced minimum errors. As a result the errors were minimized in mod-
els, and remained out of the subject of quantitative prediction. However in some 
cases it is exactly the quantity of those errors, the prediction of which is important. 
The world of finance is one of the first who supported the research as they realized 
that this error can be interpreted as what we may call the risk.  

Generalized AutoRegressiv Conditional Heteroskedasticity (GARCH) is a model 
of errors. It is mostly used in other models to represent volatility. The models that 
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make use of GARCH vary from predicting the spread of toxic gases in the 
atmosphere to simulating neural activity. But finance is still the leading area and 
dominates the research on GARCH.  

ARCH class models were first introduced by Nobel price awarded Engle (1982) 
with the ARCH model. Since then, numerous extensions have been put forward, all 
of them modelling the conditional variance as a function of past (squared) returns 
and associated characteristics. 

In recent years, the tremendous growth of trading activity and trading losses of 
financial institutions has led financial regulators and supervisory committee of banks 
to favor quantitative techniques which appraise the possible loss that these 
institutions can incur. Value-at-Risk (VaR) has become one of the most sought-after 
techniques. The computation of the VaR for a collection of returns requires the 
computation of the empirical quantile at level α of the distribution of the returns of 
the portfolio. Because quantiles are direct functions of the variance in parametric 
models, ARCH class models immediately translate into conditional VaR models. 
These conditional VaR models are important for characterizing short term risk for 
intradaily or daily trading positions. 

In this paper we investigate the estimating and forecasting capabilities of 
GARCH models when applied to daily IMKB 100 index data. We furthermore aim 
to understand whether IMKB data exhibits the common caracteristics of financial 
time series observed in developed countries. We thereby wish to contribute to the 
risk management research in Turkey, the outcomes of which will be of crucial value 
after the implementation of Basel II regulations in 2007.  

The rest of the paper is organized in the following way. In Section 2, we describe 
ARMA and GARCH processes as the building blocks of analysed variance models. 
These models are applied to daily stock index data in Section 3 where we assess 
their performances and conclude. 

 

2. Formation of variance models 
 

GARCH models are designed to capture certain characteristics that are commonly as-
sociated with financial time series: fat tails, volatility clustering and leverage effects.  

Probability distributions for asset returns often exhibit fatter tails than the 
standard normal, or Gaussian, distribution. Time series that exhibit a fat tail 
distribution are often referred to as leptokurtic. In addition, financial time series 
usually exhibit a characteristic known as volatility clustering, in which large changes 
tend to follow large changes, and small changes tend to follow small changes. In 
either case, the changes from one period to the next are typically of unpredictable 
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sign. Large disturbances, positive or negative, become part of the information set 
used to construct the variance forecast of the next period's disturbance. In this 
manner, large shocks of either sign are allowed to persist, and can influence the 
volatility forecasts for several periods. Volatility clustering, or persistence, suggests 
a time-series model in which successive disturbances, although uncorrelated, are 
nonetheless serially dependent. 

Finally, certain classes of asymmetric GARCH models are also capable of captur-
ing the so-called leverage effect, in which asset returns are often observed to be 
negatively correlated with changes in volatility. 

A standard approach of time series analysis is to take a time series that exhibits com-
plicated behavior and try to convert it to a simpler form. Optimally, such simplification 
would yield time series that were so simple that they could reasonably be modeled 
as independent and identically distributed (IID). In practice, and especially in financial 
applications, this is rarely possible. Stationarity is a condition similar to IID, but not 
as strong. Two different forms of stationarity are defined: 

i) A process is said to be strictly stationary if the unconditional joint distribution 
of any segment (yt, yt+1, ..., yt+r) is identical to the unconditional joint distribution of 
any other segment (yt+s, yt+s+1, ..., yt+s+r) of the same length.  

ii) A process is said to be covariance stationary if the unconditional joint distribution 
of any segment (yt, yt+1, ..., yt+r) has means, standard deviations and correlations that are 
identical to the corresponding means, standard deviations and correlations of the uncon-
ditional joint distribution of any other segment (yt+s, yt+s+1, ..., yt+s+r) of equal length. 
Correlations include autocorrelations and cross correlations.  

Strict stationarity is appealing because it affords a form of homogeneity across terms 
without requiring that they be independent. Covariance stationarity is the condition that 
is more frequently assumed in GARCH models. It does require that all first and second 
moments exist whereas strict stationarity does not. In this one respect, covariance sta-
tionarity is a stronger condition (Holton, 1996). 

In this paper we are going to construct linear models combining mean and variance 
equations holding either covariance or strict stationary. We will use ARMA for mean 
and GARCH for variance spesification. 

 

2.1 ARMA (R, S) And ARFIMA (R, D, S) Processes In The Conditional Mean  
 
Box and Jenkins introduced a flexible family of time series models capable of ex-
pressing a variety of short-range serial relationships in terms of linear regression, 
where the predictors are previous observations and previous residual errors.  
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One component of the Box-Jenkins framework is the autoregressive (AR) equa-
tion, where predicting variables are previous observations. An AR(r) model, where 
the predictors are the previous r terms, is defined as 

1

r

t i t i t
i

y yφ ε−
=

= +∑                                                                (1) 

In equation 1, the current value yt is partly based on the value at time t - i (i≤r), 
and partly based on a random variable ε, typically Gaussian noise. The influence of 
prior values is usually assumed to decay over time, such that φ 1>φ 2> …>φ r . 

A second component in the Box-Jenkins framework is the moving average (MA) 
process. In an MA process, the observation yt is dependent not on the previous val-
ues of yt, but rather on the values of the noise random variable ε. A moving average 
model of order s, MA(s), is defined by 

1

s

t j t j j
j

y θ ε ε−
=

= +∑                                                             (2) 

where yt depends on the previous s errors εt-j (j≤s) and the current error εt. 
Ooms and Doornik (1999) present the basic ARMA(r,s) model as 

(3) 

and the general ARMA (r,s) is in the form 
(4) 

 

where r is the order of the AR(r) part, iφ  its parameters, s the order of the MA(s) 

part, jθ its parameters and εt normally and identically distributed noise or innovation 

process.  
The family of ARMA models as defined by equation 4 is flexible and able to con-

cisely describe the serial dependencies of seemingly complex time series in terms of 
the number of parameters (i.e., the order or history) of the AR and MA components, 
and the values of these parameters. 

In fields such as physics and economics, phenomena that fluctuate over time of-
ten display long-range serial correlations. In order to correctly identify and parsimo-
niously describe processes that give rise to persistent serial correlations, traditional 
ARMA time series models can be extended to allow for fractional integration to cap-
ture long-range correlations. The resulting ARFIMA models, popular in economet-
rics and hydrology, allow for simultaneous maximum likelihood estimation of the 
parameters of both short-range and long-range processes. 

0
1 1

r s

t i t i t j j i
i j

y yφ φ ε φ ε− −
= =

= + + +∑ ∑

1 1 1 1... ...t t r t r t t s t sy y yφ φ ε θε θ ε− − − −= + + + + + +
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Following the description of Laurent and Peters (2002), by using lag polynomi-
nals and introducing a mean μ, the equation 4 becomes 

(5) 
where L is the lag operator, μ is the unconditional mean of yt,          

1
1( )

r
i

i
i

L Lφ φ
=

= − ∑  and 
1

1( )
s

i
i

i

L Lθ θ
=

= + ∑ are the autoregressiv and 

the moving average operators in the lag operator. They are polinominals of order r 
and s respectively.  With a fractional integration parameter d, the ARFIMA(r, d, s) 
model is written as 

 (6) 
The fractional differencing operator (1-L)d  is a notation for the following infinite 

polynominal: 
  (7) 

 

where ( ) ( ) / ( 1) ( )i z i z i zπ ≡ Γ − Γ + Γ − and (.)Γ is the Standard gamma func-

tion. To ensure statitionary and invertibility of the process yt, d lies between -0.5 and 
0.5. Given data series yt one can use conditional or exact likelyhood method to spec-
ify the order and parameters. The Ljung-Box statistics of residuals can check the fit.  

Bhardwaj and Swanson (2004) found that ARFIMA models perform better for 
greater forecast horizons and that they under certain conditions provide significantly 
better out-of-sample predictions than AR, MA, ARMA, GARCH, simple regime 
switching, and related models. 

Throughout the paper ARMA spesification will only be used to model the mean 
of returns. ARMA (0,0) implies a constant mean, ARMA(1,0) is simply AR(1).  It is 
also possible to make the conditional mean a function of the conditional variance. In 
that case the conditional variance derived from the GARCH model will be a variable 
in the mean equation. This then will be the so called ARCH-in-mean model, which 
we denote in this paper with (-m) in naming our models. 

 
2.2 GARCH Processes to Model The Conditional Variance  
 
If the value of the stock market index at time t is marked Pt , the return of the index 
at time t is given by  yt = ln (Pt / Pt-1) where ln denotes natural logarithm. 

For the log return series yt, we assume its mean is ARMA modelled, then let         
εt = yt - μt be the mean corrected log return. Stock market index returns can be mod-
elled with the help of the following equation: 

yt = μ + εt,                                                              (8) 

0 0

( )(1 ) ( )
( 1) ( )

d i i
i

i i

i dL L d L
i d

π
∞ ∞

= =

Γ −
− = ≡

Γ + Γ −∑ ∑

1( )( ) ( ) ( )d
ttL yL Lμ θ εφ − − =

( )( ) ( ) ttyL Lμ θ εφ − =



The Use Of ARCH And GARCH Models…. 83 

where µ is the mean value of the return, which is expected to be zero; t is a ran-
dom component of the model, not autocorrelated in time, with a zero mean value. 
Sequence εt may be considered a stochastic process, expressed as: 

εt = zt  σt                                                                (9) 
where zt is a sequence of independently and identically distributed random vari-

ables, with a distribution E(zt) = 0 and Var(zt) = 1. By definition εt is serially uncor-
related with a mean equal to zero, but its conditional variance equals σt

2 and there-
fore may change over time, contrary to what is assumed in the standard regression 
model. The conditional variance is the measure of our uncertainty about a variable 
given a model and information set. 

Following Markowitz' definition of volatility as standard deviation of the ex-
pected return, σt is the volatility of log returns at time t, the changes of which will be 
modelled by means of the following ARCH-type models. 

 

2.2.1 The ARCH Model 
 
Volatility clustering, or persistence, suggests a time-series model in which succes-
sive disturbances, although uncorrelated, are nonetheless serially dependent. Rob 
Engle had the great insight to introduce and study the class of autoregressive condi-
tionally heteroscedastic (ARCH) time series models for modeling the time-varying 
volatility clustering phenomenon (Engle, 1982). He used a weighted average of 
squared past residuals over a long period with higher weights on the recent past and 
small but non-zero weights on the distant past.  

The ARCH (q) model can be expressed as  
εt=ztσt                                                                                                              (10) 
zt ~ i.i.d D(0,1) 
σt

2 = σ2 (εt-1 , εt-2, …, t, xt, b) = σ2 (σ t-1z t-1 , σ t-2z t-2, …, t, xt, b) 
where εt denotes the prediction error at time t,  xt is a vector of lagged exogenous 
variables, b is a vector of parameters, D(.) is distribution. 

The conditional variance of εt given the information at time t-1 is σt
2. For the 

parameterization of this variance many possibilities are suggested in the literature. In 
its original form ARCH can be written as  

 
    (11) 

using ∑ operator equation 11 becomes 

                             0

1

2 2
q

it t i
i

σ α α ε −
=

= +∑                                                              (12) 

or by replacing εt = ztσt , to more clearly notice the autoregression, we get  

0 1 1
2 2 2... qt t t qσ α α ε α ε− −= + + +
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                    0

1

2 2 2
q

it t i t i
i

zσ α α σ − −
=

= +∑                                                               (13) 

The ARCH model can describe volatility clustering through the following mecha-
nism: if εt-1 was large in absolute value, σt

2 and thus εt is expected to be large in abso-
lute value as well. Even if the conditional variance of an ARCH model is time vary-

ing, the unconditional variance of εt is constant provided that α0 > 0 and 
1

q

i
i
α

=
∑ < 1.  

Conditional variance σt
2 has to be positive for all t. Sufficient conditions are when     

α0 > 0 and αi ≥ 0. Evidence has shown that a high ARCH order has to be selected to 
catch the dynamics of the conditional variance. This involves the estimation of a 
large number of parameters. The generalized ARCH (GARCH) model of Bollerslev 
(1986) is based on an infinite ARCH spesification and it allows reducing the number 
of estimated parameters by imposing nonlinear restrictions on them. 
 

2.2.2 The GARCH Model 
 
The GARCH model additionally assumes that forecasts of variance changing in time 
also depend on the lagged conditional variances of capital assets. An unexpected in-
crease or fall in the returns of an asset at time t will generate an increase in the vari-
ability expected in the period to come.  

Introduced by Engle (1982) and Bollerslev (1986) the mostly used GARCH (p,q) 
models make σt

2 a linear function of lagged conditional variances and squared past 
residual 

 (14) 
using ∑ operator 

    (15) 
 

where p is the degree of GARCH; q is the degree of the ARCH process, α0 >0, αi ≥0, 

βj≥0 . The covariance stationary condition is 
1 1

q p

i j
i j

α β
= =

+∑ ∑ < 1. Since the equation 

expresses the dependence of the variability of returns in the current period on data 
(i.e. the values of the variables εt-i

2 and σt-j
2) from previous periods, we denote this 

variability as conditional. 
One can observe that an important feature of the GARCH (p,q) model is that it can 

be regarded as an ARMA (r,s), where r is the larger of p and q. This result allows 
econometricians to apply the analysis of ARMA process to the GARCH model.  

Using the lag operator, the GARCH (p,q) model can be rewritten as: (ω=α0) 

0 1 11 1
2 2 2 2 2... ... ppqt t t q t tσ α α ε α ε β σ β σ− − − −= + + + + + +

0
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2 2 2
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q p

i it t i t i
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σ α α ε β σ− −
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= + +∑ ∑
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σt
2 = ω + α(L) εt

2 + β(L) σt
2                                                                         (16) 

where L denotes the lag operator and α(L) and β(L) denote the AR and MA poly-
nominals respectively, with  α(L) =  α1(L) + α2(L)2 + … + αq(L)q  and   
β(L) =  β1(L) + β2(L)2 + … + βp(L)p. 

If all the roots of the polynominal |1- β(L)| =0 lie outside of the unit circle, we get: 
σt

2 = ω | 1- β(L) |-1 + α(L) | 1- β(L) |-1 εt
2,                                     (17) 

which may be regarded as an ARCH ( ∞ ) process, since the conditional variance 
linearly depends on all previous squared residuals. The unconditional variance is 
given by: 

 
(18) 

 
The basic and most widespread model is GARCH (1, 1), which can be reduced to: 

 (19) 
As the variance is expected to be positive, we expect that the regression coefficients 
ω, α, β are always positive (α and β can also take the value 0), while the stationarity 
of the variance is preserved, if the the sum of α and β is smaller than 1. Conditional 
variability of the returns defined in equation 19 is determined by three effects: 

1. The constant part, which is given by the coefficient ω; 
2. Part of variance expressed by the relationship αεt–1

2 and designated as ARCH 
component; 

3. Part given by the predicted variability from the previous period and expressed 
by the relationship βσt-1

2.  
The sum of regression coefficients (α+β) expresses the influence of the variabil-

ity of variables from the previous period on the current value of the variability. This 
value is usually close to 1, which is a sign of increased effects of shocks on the vari-
ability of returns on financial assets. 

While the basic GARCH model allows a certain amount of leptokurtic behaviour 
this is often insufficient to explain real world data. We therefore use 3 distributions 
other than normal in our analysis, namely Student-t, Skewed-t (Lambert and 
Laurent, 2000-2001) and Generalized Error Distributions which help to allow for the 
fat tails in the distribution.  

The choice of the quadratic form for the conditional variance has the important 
consequence that the impact of the past values of the innovation on the current vola-
tility is only a function of their magnitude not of its sign. The principal disadvantage 
of the GARCH model is therefore its unsuitability or modelling the frequently ob-
served asymmetry that occurs when a different volatility is recorded systematically 
in the case of good and bad news.  

2 2

1 1

( )
1

t q p

i j
i j

E ωσ ε
α β

= =

≡ =
− −∑ ∑

1 1
2 2 2
t t tσ ω αε βσ− −= + +
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Falls and increases in the returns can be interpreted as good and bad news. If a 
fall in returns is accompanied by an increase in volatility greater than the volatility 
induced by an increase in returns, we may speak of a ‘leverage effect’. Following 
classes of asymmetric GARCH models are capable of capturing this effect. 
 
2.2.3 The GJR and TARCH model 
 
The GJR model is an asymmetric model. It is proposed by Glosten, Jagannathan and 
Runkle (1993). The generalized version may be written as 

 
(20) 

 
where St is a dummy variable with St-i =1, if εt-i < 0 and St-i =0, if εt-i ≥ 0. 

In this model, it is assumed that the impact of εt
2 on the conditional variance σt

2 is 
different when εt is positive or negative. The TARCH model of Zakoian (1994) is 
very similar to the GJR, where he preferred to model the standard deviation instead 
of the conditional variance. Its basic variant is GJR (1,1), which is expressed by:   

 (21) 
The model can be interpreted that unexpected (unforeseen) changes in the returns of 
the index yt expressed in terms of εt, have different effects on the conditional vari-
ance of stock market index returns. An unforeseen increase is presented as good 
news and contributes to the variance in the model through multiplicator α. An un-
foreseen fall, which is a bad news, generates an increase in volatility through multi-
plicators α and β. The asymmetric nature of the returns is then given by the nonzero 
value of the coefficient β, while a positive value of β indicates a ‘leverage effect’. 

The covariance stationary condition is 2

1 1
(1 )

q p

i i j
t j
α γ β

= =

+ +∑ ∑ < 1.  

 

2.2.4 The EARCH Model 
 
The exponential GARCH (EGARCH) model is introduced by Nelson (1991). In this 
model, the conditional variance may be expressed as follows: 

(22) 
 

where zt = εt / σt is the normalized residuals series. The function s(.) can be written as 
          s(zt)  =  δ1 zt +  δ2 { |zt| - E(|zt|) }                                                                     (23) 

1 1 1

2 2 2 2
0 1 1

q q p

t t i t i t i j t j
i i j

Sσ α α ε γ ε β σ− − − −
= = =

= + + +∑ ∑ ∑

2 2 2 2
1 1 1 1t t t t tSσ ω αε γσ βε− − − −= + + +

2 2
0 1

1 1
ln ( ) ln( )

q p

t i t j t j
i j

s zσ α α β σ− −
= =

= + +∑ ∑
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 Therefore δ1 zt adds the effect of the sign of εt whereas δ2 {|zt| - E (|zt|) adds its 
magnitude effect. E (|zt|) depends on the choice of the distribution of return series. 

For the normal distribution E (|zt|) = 2
π

.    

Its basic variant is EGARCH (1, 1) with normal distribution is expressed by: 
 
(24) 

 
The asymmetric nature of the returns is then given by the nonzero value of the coef-
ficient δ1, while a positive value of δ1 indicates a ‘leverage effect ’.  

  The use of ln transformation ensures that σt
2 is always positive and consequently 

there are no restrictions on the sign of the parameters. Moreover external unexpected 
shocks will have a stronger influence on the predicted volatility than TARCH or 
GJR.  

 
2.2.5 The APARCH Model 
 
In general, the inclusion of a power term acts so as to emphasise the periods of rela-
tive tranquillity and volatility by magnifying the outliers in that series. Squared 
terms are therefore so often used in models. If a data series is normally distributed 
than we are able to completely characterise its distribution by its first two moments 
(McKenzie and Mitchell, 2001). If we accept that the data may have a non-normal 
error distribution, other power transformations may be more appropriate. 

Recognising the possibility that a squared power term may not necessarily be op-
timal, Ding, Granger and Engle (1993) introduced a new class of ARCH model 
called the Power ARCH (PARCH) model. Rather than imposing a structure on the 
data, the Power ARCH class of models estimates the optimal power term. 

Ding, Granger and Engle (1993) also specified a generalised asymmetric version 
of the Power ARCH model (APARCH). The APARCH (p,q) model can be ex-
pressed as: 

                (25) 
 

where α0 > 0, δ ≥ 0, βj ≥ 0, αi ≥ 0 and -1 < γi < 1. 
    This model couples the flexibility of a varying exponent δ with the asymmetry 
coefficient γi to take the “leverage effect” into account. Moreover, the APARCH in-
cludes ARCH, GARCH and GJR as special cases: 

  ARCH when δ = 2, γi = 0 (i = 1,. . . ,p) and  βj = 0 (j = 1,. . . ,p), 
  GARCH when δ = 2 and γi = 0 (i = 1,. . . ,p) and  

2 21 1
1 2 1

1 1

2ln ( ) lnt t
t t

t t

ε εσ ω α δ δ β σ
σ σ π

− −
−

− −

⎡ ⎤
= + + − +⎢ ⎥

⎣ ⎦

0
1 1

( )
q p

t i t i i t i j t j
i j

δ δ δσ α α ε γ ε β σ− − −
= =

= + − +∑ ∑
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  GJR when δ = 2 
It also includes four other ARCH extentions which are not tested in this paper 

 TARCH when δ = 1, 
 NARCH when γi = 0 (i = 1,. . . ,p) and βj = 0 (j = 1,. . . ,p), 
 The Log-ARCH, when δ → 0 and 
 Taylor / Schwert GARCH when δ = 1, and γi = 0 (i = 1, . . . , p). 

A stationary solution for APARCH model exists. See Ding, Granger and Engle 
(1993) for details. 
 
2.2.6 The IGARCH Model 
 
In explaining the GARCH (p, q) model it was mentioned that GARCH may be re-
garded as an ARCH (∞) process, since the conditional variance linearly depends on 
all previous squared residuals.  Moreover it was stated that a GARCH process is co-

variance stationary if and only if 
1 1

q p

i j
i j

α β
= =

+∑ ∑ < 1. But strict stationarity does not 

require such a stringent restriction that the unconditional variance does not depend 

on t, in fact we often find in estimation that 
1 1

q p

i j
i j

α β
= =

+∑ ∑  is close to 1. 

 Lets denote h as the timelag between the present shock and future conditional 
variance. Then a shock to the conditional variance σt

2 has a decaying impact on σt+h
2. 

When h increases this impact becomes neglectable indicating a short memory.  

However if 
1 1

q p

i j
i j
α β

= =

+∑ ∑ ≥ 1, the effect on σt+h
2 does not die out even for a very 

high h. This property is called persistence in the literature. In many high frequency 
time series applications, the conditional variance estimated using GARCH (p,q) 
process exhibits a strong persistence.  

 It was also mentioned that the GARCH (p, q) process can be seen as an ARMA 
process. It is known that such an ARMA process has a unit root when 

1 1

q p

i j
i j

α β
= =

+∑ ∑ = 1. When the sum of all AR coefficients and MA coefficients is 

equal to one, the ARMA process is integrated (ARIMA). Due to their similarity to 
ARMA models GARCH models are symetric and have short memory.  
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 A GARCH model that satisfies 
1 1

q p

i j
i j
α β

= =

+∑ ∑ = 1 (or equally rewritten 

as ( ) ( ) 1L Lα β+ = ) is known as an integrated GARCH (IGARCH) process 

(Engle and Bollerslev, 1986), meaning that current information remains of impor-
tance when forecasting the volatility for all horizons. IGARCH (p, q) models are a 
kind of ARIMA models for volatilities. Recall that GARCH model is:  

2 2
t t tdefine υ ε σ≡ −                                        

(26) 
    (27) 

 This is an ARMA {max (p, q), p} model for the squared innovations. If 
( ) ( ) 1L Lα β+ =  then we have an Integrated GARCH model (IGARCH).  

The IGARCH can be expressed as:  

[ ]2( )(1 ) 1 ( )t tL L Lφ ε ω β ν− = + −  or                                                 (28) 

[ ]( )2 2 2( ) (1 ) 1 ( )t t tL L Lφ ε ω β ε σ− = + − − ,                                      (29) 

where [ ]( ) 1( ) 1 ( ) ( ) 1L L L Lθ α β −= − − −  is a polynominal of order {max (p,q)-1 } 

We can also express the conditional variance as a function of the squared residuals, 
and then an IGARCH (p, q) becomes:  

[ ] [ ]{ }12 21 ( )(1 ) 1 ( )
1 ( )t tL L L

L
ωσ φ β ε
β

−= + − − −
−

                             (30) 

  Although a process yt that follows an IGARCH process is not covariance station-
ary, and its unconditional variance is infinite, IGARCH process is still important 
since the unconditional density of yt is the same for all t, and thus the process can 
come from a strictly stationary process. However we may suspect that IGARCH is 
more a product of omitted structural breaks than the result of true IGARCH behav-
ior. An integrated process will be hereafter denoted as I(1), a non-integrared process 
I(0).  

  The assumption of short memory such as in GARCH models is usually not ful-
filled. Ding Granger and Engle (1993) during their research for the APARCH model 
have found that the absolute returns and their power transformations have a highly 
significant long-term memory property as the returns are highly correlated. For ex-
ample, significant positive autocorrelations were found at over 2,700 lags in 17,054 
daily observations of the S&P 500. That makes 2700 lags / 252 trading days = 10.7 
years. On the other hand the implications of IGARCH models are too strong which 
leads to the consideration of fractionally integrated models. 

 

2 2 2( ) ( )t L Lσ ω α ε β σ= + +
2 2( ( ) ( )) ( )t t tL L Lε ω α β ε β υ υ= + + + +
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2.2.7 The FIGARCH Model 
 
As shown in Ding, Granger, and Engle (1993) among others, the effects of a shock 
can take a considerable time to decay. Therefore, the distinction between I(0) and 
I(1) processes seems to be far too restrictive. In an I(0) process the propagation of 
shocks occurs at an exponential rate of decay so that it only captures the short-
memory, while for an I(1) process the persistence of shocks is infinite.  

  In the conditional mean, the ARFIMA specification has been proposed to fill the 
gap between short and complete persistence, so that the short-run behavior of the 
time-series is captured by the ARMA parameters, while the fractional differencing 
parameter allows for modelling the long-run dependence. 

  The first long memory GARCH model was the fractionally integrated GARCH 
(FIGARCH) introduced by Ballie, Bollerslev and Mikkelsen (1996). The FIGARCH 
(p, d, q) model is a generalization of the IGARCH model by replacing the operator 
(1-L) of the IGARCH equation by (1-L)d , where d is the memory parameter. 

[ ]2( ) (1 ) (1 ) 1 ( )d
t tL L Lφ α α ε ω β ν⎡ ⎤− + − = + −⎣ ⎦                             (31) 

where [ ]( ) 1( ) 1 ( ) ( ) 1L L L Lθ α β −= − − −  is a polynominal of order {max (p,q)-

1 }(same as IGARCH). We can also express the conditional variance as a function 
of the squared residuals, then a FIGARCH (p,d,q)  becomes:  

[ ] [ ]{ }12 21 ( )(1 ) 1 ( )
1 ( )

d
t tL L L

L
ωσ φ β ε
β

−= + − − −
−

                    (32)              

  FIGARCH models exhibit long memory. They include GARCH models (for d=1) 
and IGARCH models (for d=1). In contrast to ARFIMA models, where the memory 
parameter d is -0.5 < d <+0.5, FIGARCH d is 0 < d < 1. 

FIGARCH-processes are non-stationary like IGARCH-processes. This shows that 
the concept of unit roots can hardly be generalized from linear to nonlinear proc-
esses. Furthermore, the interpretation of the memory parameter d is difficult in the 
FIGARCH set up. 

 

2.2.8 The HYGARCH Model 
 
Davidson (2001) extended the class of FIGARCH models to HYGARCH(p,α,d,q) 
models which stands for hyperbolic GARCH. HYGARCH-models replace the op-
erator (1-L)d in FIGARCH equation  by [(1- α)+α(1-L)d]. The parametrization of 
HYGARCH-models is given by 
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[ ] [ ] { }{ }12 21 1 ( ) ( ) 1 (1 )
1 ( )

d
t tL L L

L
ωσ β φ α ε
β

− ⎡ ⎤= + − − + −⎣ ⎦−
            (33)                  

    The parameters α and d are assumed to be non-negative. HYGARCH-models nest 
GARCH models (for α = 0), FIGARCH-processes (for α = 1) and IGARCH-models 
(for α = d = 1). 
 
2.2.9 FI process of Chung v.s. Ballie, Bollerslev and Mikkelsen (BBM)  
 
Chung (1999) underscores some little drawbacks in the BBM model: there is a struc-
tural problem in the BBM specification since the direct implementation of the 
ARFIMA framework originally designed for the conditional mean equation is not 
perfect for the use in conditional variance equation, leading to difficult interpreta-
tions of the estimated parameters. 

Indeed the fractional differencing operator applies to the constant term in the 
mean equation (ARFIMA) while it does not in the variance equation (FIGARCH). 
Chung (1999) proposes a slightly different process: 

[ ]{ }12 2 2 21 1 ( ) ( ) (1 ) ( )d
t tL L Lσ σ β φ ε σ−= + − − − −                       (34)                           

or 
           2 2 2 2( ) ( )t tLσ σ λ ε σ= + −                                                                       (35) 

λ (L) is an infinite summation which, in practice, has to be truncated. BBM propose 
to truncate λ (L) at 1000 lags and initialize the unobserved εt

2 at their unconditional 
moment. Contrary to BBM, Chung (1999) proposes to truncate λ (L) at the size of 
the information set (t-1) and to initialize the unobserved (εt

2- σ2) at 0. In our analysis 
we hold the proposal of BBM and truncate at 1000 lags. 
 

2.2.10 The FIEGARCH and FIAPARCH Model 
 
The idea of fractional integration has been extended to other GARCH types of mod-
els, including the Fractionally Integrated EGARCH (FIEGARCH) of Bollerslev and 
Mikkelsen (1996) and the Fractionally Integrated APARCH (FIAPARCH) of Tse 
(1998). 

Similarly to the GARCH (p, q) process, the EGARCH (p, q) can be extended to 
account for long memory by factorizing the autoregressive polynomial 

[ ]1 ( ) ( ) (1 ) dL L Lβ φ− = −  where all the roots of φ (z) = 0 lie outside the unit cir-

cle. The FIEGARCH (p, d, q) is specified as follows: 

[ ]2 1
1ln( ) ( ) (1 ) 1 ( ) ( )d

t tL L L s zσ ω φ α− −
−= + − +                                  (36) 
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And the FIAPARCH (p, d, q) model can be written as: 

[ ]{ }11 1 ( ) ( )(1 ) ( )d
t t tL L Lδ δσ ω β φ ε γε−= + − − − −                       (37) 

 
3. Empirical Applications 
 
In order to study the estimation and forecasting performances of different GARCH 
processes, 11 models are applied to Istanbul Stock Exchange 100 Index log returns. 
We used daily data from 3.1.1996 to 15.12.2004. From a total of 2200 trading days 
2000 are used for estimation and 200 are left to test the forecasts. 

  The models applied are GARCH, EGARCH, GJR, APARCH, IGARCH, 
FIGARCH of BBM, FIGARCH of Chung, FIEGARCH, FIAPARCH of BBM, 
FIAPARCH of Chung and HYGARCH. The (p,q) = (1,1) variant of all models are 
systematically tested with four different distributions, namely, Gaussian Normal, Stu-
dent-t, Generalized Error Distribution (GED) and Skewed-t distribution. That makes 
44 basic models. Moreover for matters of observation 50 more models of higher order 
combined with ARMA are unsystematically experimented to examine the effects on 
estimation and forecasting performances with an emphasis on Maximum Likelihood.  

  We have written an Ox code named IMKB_Estimate&Forecast.ox on the basis 
of the examples and objects provided in the Ox 3.40 and its G@RCH 3.00 package 
and used it for our analysis. G@RCH 3.0 of Laurent and Peters (2002) is a package 
dedicated to GARCH models and many of its extensions. It is written in the Ox pro-
gramming language (see Doornik, 1999). G@RCH 3.0 can be downloaded free of 
charge for academic purposes at http://www.egss.ulg.ac.be/garch/.  

  The program proved to be very flexible and fast. Currently only sharewares pro-
vided for academic research are capable of analyzing such recent variety of models. 
Moreover most standard software do not allow for such a flexible combination of 
processes like we applied in our analysis. With open-source code are able to add or 
modify specifications, processes or graphics in the future.  

  Estimation results are evaluated on the basis of ML, Akaike, Schwarz, Shibata 
and Hannan-Quinn values, whereas forecasting results are ranked according to Min-
cer Zarnowitz regression R2, Root Mean Square Error, Mean Square Error and Mean 
Absolute Error value criteria.  
 
3.1 Estimation Results 
 
It is apparent that t distributions shall be preferred if one aims to obtain a better rep-
resentation of the existing data. Among the first 15 best basic estimating models ac-
cording to all five criteria all was either student-t or skewed-t. GED and Normal dis-
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tributions follow. Therefore in comparing the estimation powers of models, we re-
strict our comments to student and skewed-t distributions. Test statistics of some 
models in estimating performances and forecasting performances according to dif-
ferent criteria are given Table 3.1.5 and Table 3.2.5.  
 
Table 3.1.1: First 20 And Last Ten Models With Constant Mean İn 
Estimating Performances According To Different Criteria 
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n
k2
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LogL2 +−  
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LogL2 +−
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FIAparchCh11Skt FIAparchBBM11St-t FIgarchCh11St-t FIAparchBBM11St-t FIgarchCh11St-t 
FIAparchBBM11Skt FIAparchCh11Skt FIgarchBBM11St-t FIAparchCh11Skt FIgarchBBM11St-t 
FIAparchBBM11St-t FIAparchBBM11Skt HYGarch11St-t FIAparchBBM11Skt FIAparchBBM11St-t 
FIAparchCh11St-t FIAparchCh11St-t FIgarchCh11Skt FIAparchCh11St-t FIAparchCh11St-t 

5 

HYGarch11Skt FIgarchCh11St-t FIGarchBBM11Skt FIgarchCh11St-t HYGarch11St-t 

5

HYGarch11St-t FIgarchBBM11St-t FIAparchBBM11St-t FIgarchBBM11St-t FIgarchCh11Skt 
FIgarchCh11Skt HYGarch11St-t Igarch11St-t HYGarch11St-t FIGarchBBM11Skt 
FIGarchBBM11Skt FIgarchCh11Skt FIAparchCh11St-t FIgarchCh11Skt FIAparchCh11Skt 
FIgarchCh11St-t FIGarchBBM11Skt Garch11St-t FIGarchBBM11Skt FIAparchBBM11Skt 

10 

FIgarchBBM11St-t HYGarch11Skt Gjr11St-t HYGarch11Skt HYGarch11Skt 

10

Aparch11Skt Gjr11St-t HYGarch11Skt Gjr11St-t Gjr11St-t 
Gjr11Skt Gjr11Skt FIAparchCh11Skt Gjr11Skt Gjr11Skt 
Aparch11St-t Aparch11St-t FIAparchBBM11Skt Aparch11St-t Garch11St-t 
Gjr11St-t Aparch11Skt Igarch11Skt Aparch11Skt Aparch11St-t 

15 
FIAparchCh11GED Garch11St-t Garch11Skt Garch11St-t Igarch11St-t 

15

FIAparchBBM11GED Garch11Skt Gjr11Skt Garch11Skt Garch11Skt 
Garch11Skt FIAparchCh11GEDFIGarchCh11GED FIAparchCh11GEDAparch11Skt 
HYGarch11GED FIAparchBBM11GED Aparch11St-t FIAparchBBM11GED FIGarchCh11GED 
Garch11St-t FIGarchCh11GED FIGarchBBM11GEDFIGarchCh11GED FIGarchBBM11GED 

20 

FIGarchCh11GED FIGarchBBM11GEDAparch11Skt FIGarchBBM11GEDIGarch11Skt 

20 

         ……………………………………………………………………………………………  
FIgarchBBM11N HYGarch11N Garch11N HYGarch11N HYGarch11N 
EGarch11Skt Gjr11N Igarch11N Gjr11N Garch11N 
Aparch11N Garch11N Gjr11N Garch11N Gjr11N 
Gjr11N Aparch11N Aparch11N Aparch11N Aparch11N 

10

Garch11N EGarch11Skt EGarch11Skt EGarch11Skt Igarch11N 

10

Igarch11N Igarch11N EGarch11GED Igarch11N EGarch11Skt 
EGarch11GED EGarch11GED FIEgarch11N EGarch11GED EGarch11GED 
FIEgarch11St-t FIEgarch11St-t FIEgarch11St-t FIEgarch11St-t FIEgarch11N 
FIEgarch11N FIEgarch11N EGarch11N FIEgarch11N FIEgarch11St-t 

5

EGarch11N EGarch11N FIAparchBBM11GED EGarch11N EGarch11N 

5

Log-L = log likelihood value, n = number of observations, k = number of estimated parame-
ters 
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  For optimizing maximum likelihood, skewed-t performs better than student-t for 
all models. On the other hand if we evaluate according to the other four criteria, by 
which more complicated models are penalized for the inclusion of additional pa-
rameters, skewed-t looses its apparent advantage, because it requires an additional 
skewness parameter. Especially Hannan-Quinn test seems to judge according to the 
distribution rather than the model specification and prefer student-t.   

  We found that the choice of models is at least as important as the choice of 
distributions, because best performing models combined with both distributions 
found place in the front ranks, mostly successively. For ranking models with 
constant mean in estimating performances according to different criteria, test 
statistics, illustrated on Table 3.1.5, are used.  
 
Table 3.1.2: Minimum Sum Of Rankings Of Different GARCH And 
FIAPARCH Specifications 
 Log- L Akaike Shibata Hannan-Quinn Total 
AR1Garch22Skt 2 1 1 2 6 
Garch22Skt 3 2 2 1 8 
ARMA22Garch-m33Skt 1 3 3 7 14 
AR1Garch-m11Skt 4 4 4 6 18 
AR1Garch11Skt 5 5 5 5 20 
Garch11St-t 7 6 6 3 22 
Garch11Skt 6 7 7 4 24 
Garch11GED 8 8 8 8 32 
AR1Garch11N 9 9 9 9 36 
Garch11N 10 10 10 10 40 
             …………………………………………………………………………………… 

 Log-L Akaike Schwarz Shibata Hannan-Quinn Total 
AR1FIAparchCh11Skt 3 2 3 2 3 13 
ARMA11FIAparchCh21Skt 1 1 7 1 6 16 
AR1FIAparchCh21Skt 2 4 5 3 5 19 
AR1FIAparchCh21St-t 4 3 4 4 4 19 
FIAparchCh11Skt 5 5 2 5 2 19 
FIAparchCh11St-t 6 6 1 6 1 20 
FIAparchCh11GED 8 7 6 7 7 35 
AR1FIAparchCh21GED 7 8 8 8 8 39 
AR1FIAparchCh21N 9 9 10 9 10 47 
FIAparchCh11N 10 10 9 10 9 48 

 
    Log Likelihood results are consistent with aggregate results. Normal 

distribution estimates worse for all models. Higher orders alone improve results 
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more than ARMA specifications alone. Together they improve more but the 
marginal benefit decreases. 

   Among the basic models fractionally integrated ones, especially FIAPARCH of 
BBM and that of Chung combined with student-t and skewed-t distributions perform 
outstanding based on all criteria. It is also to note that based on the estimation 
power, the methods of BBM and Chung report only slight differences. We can con-
clude that among models with the same distribution and same mean specification a 
FI (1) model is a better estimator than its FI (0) counterpart. This is a clear indicator 
that IMKB 100 indices shows strong persistence and the effect of shocks influence 
future returns for long periods. That FI (1) performs better then I (1) show that the 
persistence is not completely permanent. 

 

Table 3.1.3: Comparison Of APARCH And FIAPARCH Models 
 Model  Structure  
Model Mean Equation Variance Equation Distribution Log-L 
ARMA11Aparch33Skt ARMA(1,1) Aparch (3,3) Skewed-t 4239.96   
AR1Aparch22Skt ARMA(1,0) Aparch (2,2) Skewed-t 4238.40 
Aparch22Skt ARMA(0,0) Aparch (2,2) Skewed-t 4237.11 
Aparch33Skt ARMA(0,0) Aparch (3,3) Skewed-t 4236.68 
AR1Aparch11Skt ARMA(1,0) Aparch (1,1) Skewed-t 4230.44 
Aparch11Skt ARMA(0,0) Aparch (1,1) Skewed-t 4228.85 
Aparch11St-t ARMA(0,0) Aparch (1,1) Student-t 4227.98 
ARMA11Aparch-m11GED ARMA(1,1) Aparch (1,1) GED 4221.97 
Aparch11GED ARMA(0,0) Aparch (1,1) GED 4218.36 
Aparch11N ARMA(0,0) Aparch (1,1) Normal 4170.24 
     ………………………………………………………………………………………… 
AR1FIAparchBBM21Skt ARMA(1,0) FIAparchBBM (2,d,1) Skewed-t 4239.05   
AR1FIAparchBBM11St-t ARMA(1,0) FIAparchBBM (1,d,1) Student-t 4238.10 
FIAparchBBM11Skt ARMA(0,0) FIAparchBBM (1,d,1) Skewed-t 4237.78 
FIAparchBMM11St-t ARMA(0,0) FIAparchBBM (1,d,1) Student-t 4236.83 
AR1FIAparchBBM11GED ARMA(1,0) FIAparchBBM (1,d,1) GED 4227.41 
FIAparchBMM11GED ARMA(0,0) FIAparchBBM (1,d,1) GED 4226.64 
FIAparchBBM11N ARMA(0,0) FIAparchBBM (1,d,1) Normal 4181.37 
 

   A ranking among the specifications would be the existence of FI followed by the 
existence of asymetry. The coefficients indicating asymmetry are mostly significant 
and showing that there exist a leverage effect in IMKB 100. The simple GARCH 
(1,1) with t distributions follow the more complex models with t distributions but is 
clearly better than any model, even the FI(1) and asymmetric models, combined 
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with GED or Normal distribution. No EGARCH model could reach strong 
convergence during numerical optimization and results are misleading. 

  With distributions and mean specifications equal, the FI (1) version outperforms 
the FI (0) version based on Log Likelihood.  

  Given the same distribution and same GARCH orders, using an autoregression 
AR(1) or autoregression+moving average ARMA (1,1) or an ARCH-in-mean effect 
in the mean equation improves the performance of all models if the ranking is based 
on maximum likelihood. Again the other four criteria take the additional parameters 
in account, however most of the time the improvement in maximum likelihood is 
large enough to compensate for the estimation burden of additional parameters. The 
marginal improvement decreases as the mean equation gets more complex. 

  The stand-alone effect of increasing the orders is significantly more than 
standalone effect of manipulating the mean equation. Orders of (2, 2) or (3, 3) 
perform well, but the chances of non-convergence and getting misleading results 
also increases. 

   
Table 3.1.4: Best 20 Estimating Models Based On Log Likelihood 
 Model  Structure   
Model Mean Equation Variance Equation Distribution Log-L R2 

ARMA11FIAparchCh21Skt ARMA(1,1) FIAparchBBM(2,d,1)Skewed-t 4241.82 0.011570 
AR1FIAparchCh21Skt ARMA (1,0) FIAparchCh (2,d,1) Skewed-t 4239.99 0.012283 
ARMA11Aparch33Skt ARMA (1,1) Aparch (3,3) Skewed-t 4239.96 0.008243 
ARMA11GJR33Skt ARMA (1,1) GJR (3,3) Skewed-t 4239.43 0.020429 
AR1FIAparchCh11Skt ARMA (1,0) FIAparchCh (1,d,1) Skewed-t 4239.07 0.012136 
AR1FIAparchBBM21Skt ARMA (1,0) FIAparchBBM(2,d,1)Skewed-t 4239.05 0.011850 
AR1FIAparchCh21St-t ARMA (1,0) FIAparchCh (2,d,1) Student-t 4238.99 0.011743 
AR1Gjr22Skt ARMA (1,0) GJR (2,2) Skewed-t 4238.46 0.008727 
ARMA22Garch-m33Skt ARMA (2,2) ARCH-mGARCH (3,3) Skewed-t 4238.41 0.014413 
AR1Aparch22Skt ARMA (1,0) Aparch (2,2) Skewed-t 4238.40 0.008754 
AR1FIAparchBBM11St-t ARMA (1,0) FIAparchBBM (1,d,1) Student-t 4238.10 0.011746 
FIAparchCh11Skt ARMA (0,0) FIAparchCh (1,d,1) Skewed-t 4237.81 0.012526 
FIAparchBBM11Skt ARMA (0,0) FIAparchBBM(1,d,1)Skewed-t 4237.78 0.012499 
Aparch22Skt ARMA (0,0) Aparch (2,2) Skewed-t 4237.11 0.008964 
FIAparchBBM11St-t ARMA (0,0) FIAparchBBM(1,d,1)Student-t 4236.83 0.012130 
Gjr33Skt ARMA (0,0) GJR (3,3) Skewed-t 4236.68 0.021404 
Aparch33Skt ARMA (0,0) Aparch (3,3) Skewed-t 4236.68 0.021544 
FIAparchCh11St-t ARMA (0,0) FIAparchCh (1,d,1) Student-t 4236.47 0.008248 
AR1HYGarch22Skt ARMA (1,0) HYGarch (2,d,2) Skewed-t 4236.00 0.012553 
AR1HYGarch11Skt ARMA (1,0) HYGarch (1,d,1) Skewed-t 4235.85 0.011973 
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  FIAPARCH models of different specifications and distributions dominate. 
Including mean specifications clearly improve Log-L results. Skewed-t distribution 
seems to be the solution for fat tails.   

  The combination of more complex mean equation with higher orders perform 
overall better with the cost of additional parameters. As a result we can conclude 
that, based on the maximum likelihood, the more complex a model is the better it 
fits to the data. 
    Combined rankings allow for the conclusion that maximum likelihood is a 
consistent evaluation criterion. While Akaike, Shibata, Schwarz and Hannan-Quinn 
may result in complete different rankings, the aggregate results are consistent with 
that of the maximum likelihood.  

  If skewed-t or student-t distributions are used, it is always possible to increase the 
likelihood by adding more tailored processes, implying a better fit to the data on the 
basis of numbers. However using the graphs we can show that even the simplest 
GARCH (1, 1) is a satisfactory model in estimation. The differences are not subtle 
and using a GARCH (1, 1) model would not lead to a different decision than a 
decision based on a more complex ARMA (1, 1) FIAPARCH (2, 1) model. GARCH 
models in general succeed in reproducing volatility clustering, persistence, leverage 
effect and fat tail behavior of real world data.  

 

 
Graph 3.1.1: ARMA(1,1)FIARCHCh(2,1)Skewed-t.  
 



98  Bahadtin Rüzgar, İsmet Kale 

Best estimator in test, Log-L=4241,82. Note that the series and the residuals are 
almost identical implying a good reproduction of characteristics, outliers are 
perfectly cached. 
 

 
Graph 3.1.2: GARCH(1,1)Normal.  
      

One of the worse estimators in comparison, Log-L=4168.74. Reproduction of the 
data was able to catch the important outliers but tends to stay closer around mean. 
Residuals graph is “thicker”. Note the highest two points around data 1200 
(November-December 2000). Conditional variance is higher where medium size 
residuals of around ± 0.1 cluster than where single big residual of around -0.2. This 
is the opposite in above graph. GARCH (1, 1) Normal has slower responses. 
 
Table 3.1.5: Test Statistics Of Each Model  
  Information Criterium (minimize) 
Model Log-L Akaike Schwarz Shibata Hannan-Quinn 
FIAparchCh11Skt 4237.81 -4.230929 -4.20571 -4.230969 -4.221670 
FIAparchBBM11Skt 4237.78 -4.230895 -4.20568 -4.230935 -4.221636 
FIAparchBBM11St-t 4236.83 -4.230948 -4.20854 -4.230980 -4.222719 
FIAparchCh11St-t 4236.47 -4.230588 -4.20818 -4.230620 -4.222358 
HYGarch11Skt 4234.68 -4.228795 -4.20638 -4.228827 -4.220565 
HYGarch11St-t 4234.04 -4.229157 -4.20955 -4.229182 -4.221956 
FIgarchCh11Skt 4233.97 -4.229089 -4.20948 -4.229114 -4.221888 
FIGarchBBM11Skt 4233.81 -4.228926 -4.20931 -4.228950 -4.221725 
FIgarchCh11St-t 4233.39 -4.229502 -4.21269 -4.229520 -4.223330 
FIgarchBBM11St-t 4233.25 -4.229369 -4.21256 -4.229387 -4.223197 
Aparch11Skt 4228.85 -4.222966 -4.20055 -4.222998 -4.214736 
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Gjr11Skt 4228.82 -4.223935 -4.20432 -4.223959 -4.216734 
Aparch11St-t 4227.98 -4.223096 -4.20349 -4.223120 -4.215895 
Gjr11St-t 4227.97 -4.224081 -4.20727 -4.224099 -4.217909 
FIAparchCh11GED 4226.78 -4.220889 -4.19848 -4.220920 -4.212659 
FIAparchBBM11GED 4226.64 -4.220747 4.19834 -4.220779 -4.212518 
Garch11Skt 4225.11 -4.221221 -4.20441 -4.22124 -4.215049 
HYGarch11GED 4224.61 -4.219716 -4.20011 -4.219741 -4.212515 
Garch11St-t 4224.59 -4.221704 -4.20770 -4.22172 -4.216561 
FIgarchCh11GED 4224.27 -4.220382 -4.20357 -4.220400 -4.214210 
FIgarchBBM11GED 4224.05 -4.220160 -4.20335 -4.220178 -4.213987 
Igarch11Skt 4222.01 -4.219117 -4.20511 -4.219129 -4.213973 
Igarch11St-t 4221.30 -4.219411 -4.20821 -4.219419 -4.215296 
Gjr11GED 4218.37 -4.214472 -4.19766 -4.214490 -4.208300 
Aparch11Ged 4218.36 -4.213471 -4.19386 -4.213496 -4.206270 
Garch11GED 4216.12 -4.213226 -4.19922 -4.21324 -4.208082 
Igarch11GED 4212.15 -4.210254 -4.19905 -4.210262 -4.206139 
EGarch11St-t 4205.20 -4.200303 -4.18069 -4.20033 -4.193102 
FIEgarch11Skt 4203.91 -4.197007 -4.17179 -4.197047 -4.187749 
FIEgarch11GED 4192.53 -4.186621 -4.16421 -4.186653 -4.178392 
FIAparchCh11N 4182.80 -4.177891 -4.15828 -4.177916 -4.170690 
FIAparchBBM11N 4181.37 -4.176462 -4.15685 -4.176486 -4.169261 
FIgarchCh11N 4179.29 -4.176376 -4.16237 -4.176389 -4.171233 
HYGarch11N 4179.07 -4.175160 -4.15835 -4.175178 -4.168988 
FIgarchBBM11N 4178.99 -4.176076 -4.16207 -4.176088 -4.170932 
EGarch11Skt 4172.21 -4.166289 -4.14388 -4.16632 -4.158059 
Aparch11N 4170.24 -4.166320 -4.14951 -4.166338 -4.160148 
Gjr11N 4170.24 -4.167319 -4.15331 -4.167331 -4.162175 
Garch11N 4168.74 -4.166826 -4.15562 -4.16683 -4.162711 
Igarch11N 4163.80 -4.162879 -4.15447 -4.162883 -4.159793 
EGarch11GED 4154.92 -4.149993 -4.13038 -4.15002 -4.142792 
FIEgarch11St-t 4122.17 -4.116231 -4.09382 -4.116263 -4.108002 
FIEgarch11N 4120.69 -4.115746 -4.09614 -4.115770 -4.108545 
EGarch11N 4096.69 -4.092739 -4.07593 -4.09276 -4.086567 

 
3.2 Forecasting Results 
 
As we expected, the best models for estimation are not necessarily the best ones for 
forecasting. The same thing is also true for the distributions. The specification of the 
model has a more clear and predictable effect on Mincer Zarnowitz regression R2. 
As explained by Laurent and Peters (2002) the Mincer-Zarnowitz regression has 
been largely used to evaluate forecasts in the conditional mean. For the conditional 
variance, it is computed by regressing the forecasted variances on the actual 
variances.  

2 2ˆt t tσ α βσ υ= + +                                                                                (34) 

Table 3.1.5 devamı 
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The other criteria are minimizing errors and lead to difficult interpretation and 
inconsistent rankings. Like the maximum likelihood in estimation, R2 is in general 
more consistent with the aggregated ranking results.  

 

Table 3.2.1: 20 Best Forecasting Models Based On R2 

 Model  Structure   
Model Mean Equation Variance 

Equation 
Distribution Log-L R2 

Igarch11Skt ARMA (0,0) Igarch (1,1) Skewed-t 4222.01 0.021975 
Igarch11N ARMA (0,0) Igarch (1,1) Normal 4163.80 0.021846 
Igarch11GED ARMA (0,0) Igarch (1,1) GED 4212.15 0.021611 
Aparch33Skt ARMA (0,0) Aparch (3,3) Skewed-t 4236.68 0.021544 
Igarch11St -t ARMA (0,0) Igarch (1,1) Student-t 4221.30 0.021478 
Gjr33Skt ARMA (0,0) GJR (3,3) Skewed-t 4236.68 0.021404 
Ar1Igarch11Skt ARMA (1,0) Igarch (1,1) Skewed-t 4223.65 0.020980 
ARMA11Igarch11GED ARMA (1,1) Igarch (1,1) GED 4214.04 0.020875 
ARMA11Igarch11Skt ARMA (1,1) Igarch (1,1) Skewed-t 4225.31 0.020874 
Aparch11Skt ARMA (0,0) Aparch (1,1) Skewed-t 4228.85 0.020827 
Gjr11Skt ARMA (0,0) GJR (1,1) Skewed-t 4228.82 0.020781 
ARMA11GJR33Skt ARMA(1,1) GJR (3,3) Skewed-t 4239.43 0.020429 
Aparch11St-t ARMA (0,0) Aparch (1,1) Student-t 4227.98 0.020152 
Gjr11St-t ARMA (0,0) GJR (1,1) Student-t 4227.97 0.020110 
Aparch11N ARMA (0,0) Aparch (1,1) Normal 4170.24 0.020053 
Gjr11N ARMA (0,0) GJR (1,1) Normal 4170.24 0.020052 
Gjr11GED ARMA (0,0) GJR (1,1) GED 4218.37 0.019908 
Aparch11Ged ARMA (0,0) Aparch (1,1) GED 4218.36 0.019904 
AR1Aparch11Skt ARMA (1,0) Aparch (1,1) Skewed-t 4230.44 0.019801 
Garch11Skt ARMA (0,0) GARCH (1,1) Skewed-t 4225.11 0.019484 

 
IGARCH performance is worth noting. Riskmetrics process of J.P. Morgan is also 

a kind of IGARCH. For details of the model see Mina and Xiao (2001). 
 

 
Graph 3.2.1: IGARCH(1,1) Skt is one of the integrated models that proved to be a 
good forecast model based on R2. MSE tells it is the third worse. 
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Graph 3.2.2: EGARCH(1,1) GED converged only weakly after 208 BFGS 
iterations in 52 seconds. However it reached a record level R2 and MSE.  
 
       Graphically it seems to make a fairly good conditional variance forecast of 
absolute returns. A closer look predicts that the peak points of forecasts follow 
actual data with a small delay. Based on MAE and RMSE this model is the second 
worse. 
 

 
Graph 3.2.3: ARMA(1,1)FIAPARCH(2,d,1) Skt was the best estimator according 
to Log-L, an average forecaster based on R2. RMSE ranks it to the bottom. 
 

    GED and skewed-t distributions performed well in predictions but it is not 
possible to favor any distribution. While RMSE and MAE ranked the t-distributions 
better, MSE favored GED and puts t distributions to the bottom. R2 made no 
implications on the distribution. Normal distributions give consistently moderate 
results. 
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Table 3.2.2: First 20 And Last Ten Models With Constant Mean İn 
Forecasting Performances According To Different Criteria 
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EGarch11GED  Garch11Skt            14 Gjr11GED     12 Garch11GED  17 
Igarch11Skt  FIAparchBBM11Skt 19 Aparch11Ged  13 FIEgarch11Skt  40 
Igarch11N  FIAparchCh11Skt 18 EGarch11GED 1 Garch11Skt 14 
Igarch11GED  FIGarchBBM11Skt 25 FIEgarch11N  38 FIAparchBBM11Sk

t  
19 

5 

Igarch11St-t  Igarch11Skt  2 Aparch11N  10 FIAparchCh11Skt  18 

5 

Aparch11Skt  HYGarch11Skt  21 Gjr11N 11 FIGarchBBM11Skt  25 
Gjr11Skt  FIgarchCh11Skt  22 FIAparchBBM11G

ED  
20 Igarch11Skt  2 

Aparch11St-t  Aparch11Skt  6 FIAparchCh11GED 36 HYGarch11Skt  21 
Gjr11St-t  Gjr11Skt  7 FIEgarch11GED  39 FIgarchCh11Skt  22 

10 

Aparch11N  HYGarch11St-t  32 Garch11GED  17 FIAparchBBM11St-t  23 

10 

Gjr11N  FIgarchCh11St-t  33 FIgarchCh11GED  28 FIAparchCh11St-t  37 
Gjr11GED  FIEgarch11Skt  40 FIAparchCh11N  35 Igarch11St-t  5 
Aparch11Ged Igarch11N 3 Igarch11GED  4 Garch11St-t  16 
Garch11Skt  FIAparchBBM11St-t 23 FIAparchBBM11N 24 Aparch11Skt  6 

15 

Garch11N  FIAparchCh11St-t 37 HYGarch11GED  26 Gjr11Skt  7 

15 

Garch11St-t  Igarch11St-t  5 FI-
garchBBM11GED 

31 HYGarch11St-t  32 

Garch11GED  Garch11St-t  16 Aparch11St-t  8 FIgarchCh11St-t  33 
FIAparchCh11Skt  FIgarchBBM11St-t 34 Gjr11St-t  9 FIgarchBBM11St-t  34 
FIAparchBBM11Skt  Gjr11GED  12 Garch11N  15 FIgarchCh11GED  28 

20 

FIAparchBBM11GED Aparch11Ged  13 FIgarchBBM11N  29 FIAparchCh11N  35 

20 

           ……….…………………………………………………………………………………  
FIgarchBBM11GE HYGarch11GED  26 FIgarchCh11St-t  33 FIAparchCh11GED  36 
HYGarch11St-t  FIgarchBBM11GED 31 FIgarchBBM11St-t 34 FIEgarch11GED  39 
FIgarchCh11St-t  Aparch11St-t  8 FIEgarch11Skt  40 Igarch11GED  4 
FIgarchBBM11St-t  Gjr11St-t  9 Garch11Skt  14 FIAparchBBM11N  24 

10 

FIAparchCh11N  Garch11N  15 FIAparchBBM11Sk19 HYGarch11GED 26 

10 

FIAparchCh11GED FIgarchBBM11N  29 FIAparchCh11Skt  18 FI-
garchBBM11GED  

31 

FIAparchCh11St-t  HYGarch11N  30 FIGarchBBM11Skt 25 Gjr11GED  12 
FIEgarch11N  FIgarchCh11N  27 Igarch11Skt  2 Aparch11Ged 13 
FIEgarch11GED  EGarch11GED  1 HYGarch11Skt  21 EGarch11GED  1 

5 

FIEgarch11Skt  FIEgarch11N  38 FIgarchCh11Skt 22 FIEgarch11N  38 

5 

 
While R2 ranks according to model specification, minimum error criteria seem to 

give more importance to distributions. FI (1) models perform poor forecasts based 
on R2 whereas other criteria do not allow for a conclusion. 
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It is also hard to draw conclusions from the model specification. Remarkable are the 
forecasting performances of GJR, IGARCH and GARCH. R2 gave the worst 
performances with FI (1) models while the best performers were I (1) and non-
integrated ones. Therefore we can conclude that either a complete integration or no 
integration is preferred to a fractional integration. In general one obtains better R2 
results the simpler a model is specified. Increased parameters through modifications in 
mean or higher orders provide poor R2 results. Especially the order (2, 2) consistently 
outputs very poor R2. The order (3, 3) can be either a good performer or a bad choice, 
but it is worth trying. The results of FI processes of BMM and Chung are again very 
similar. According to the evaluation criteria they are either among the first or among 
the very last.   
 

Table 3.2.3: Minimum Sum Of Rankings For Different IGARCH 
Specifications 
 R2 RMSE MSE MAE TOTAL 
Igarch11N  2 2 2 3 9 
Igarch11GED  3 1 1 4 9 
Igarch11Skt      1 4 5 1 11 
Igarch11St-t  4 2 3 2 11 
Igarch33Skt  10 3 4 1 18 
Igarch22Skt  8 4 6 1 19 
Ar1Igarch11Skt  5 5 9 3 22 
ARMA11Igarch11GED  6 4 7 5 22 
AR1Igarch22Skt  9 5 8 2 24 
ARMA11Igarch11Skt  7 6 10 6 29 

 
  R2 rankings are consistent with aggregate rankings. In general simpler models 

with less parameter perform better forecasts.  
   

Table 3.2.4: Minimum Sum Of Rankings For Different GARCH Specifications 
 R2 RMSE MSE MAE TOTAL 
Garch11GED  4 1 1 1 7 
Garch11N  2 1 2 4 9 
Garch11St-t  3 2 3 3 11 
Garch11Skt      1 4 6 2 13 
AR1Garch11N  6 3 4 5 18 
AR1Garch11Skt  5 4 8 4 21 
AR1Garch-m11Skt  7 3 5 6 21 
Garch22  9 4 7 2 22 
ARMA22Garch-m33Skt  8 3 6 7 24 
AR1Garch22Skt  10 4 8 3 25 
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  RMSE, MSE and MAE give very different rankings in cross comparison. 
However in general mean specifications restrict the flexibility of all models and 
result in a general trend and can not capture the outliers. 

  Simple GARCH(1,1) performs generally well according to all criteria. GARCH 
estimation outputs the sum of all coefficients very close to 1. This explains its 
forecasting success close to IGARCH. The size of the sample is a crucial factor 
affecting the forecasting performance. Therefore we believe that most models would 
behave differently with different sample sizes which could be the topic of a separate 
research. Test statistics for forecast evaluation measures of some models are given 
in the following Table.  

 
Table 3.2.5: Test Statistics Of Some Models İn Forecasting Performances 
According To Different Criteria 
 Forecast Evaluation Measures    
Model R² MSE(M) MSE(V) MAE(M) MAE(V) RMSE (M) RMSE (V) 

ARMA22Garch-m33Skt 0,014413 0.0002767 1.705E-07 0.01307 0.000271 0.01663 0.000413 
AR1Garch22Skt 0.008062 0.0002770 1.708E-07 0.01299 0.000284 0.01664 0.000413 
Garch22Skt 0.008096 0.0002768 1.708E-07 0.01298 0.000283 0.01664 0.000413 
AR1Garch-m11Skt 0.017135 0.0002766 1.689E-07 0.01306 0.000271 0.01663 0.000411 
AR1Garch11Skt 0.018712 0.0002770 1.680E-07 0.01300 0.000271 0.01664 0.000410 
Garch11Skt 0.019483 0.0002767 1.678E-07 0.01298 0.000270 0.01664 0.000410 
Garch11St-t 0.018915 0.0002763 1.682E-07 0.01299 0.000270 0.01662 0.000410 
EGarch11St-t 0.008337 0.0002758 1.900E-07 0.01301 0.000267 0.01661 0.000436 
ARMA11Egarch22Skt 0.020393 0.0002801 2.616E-07 0.01305 0.000391 0.01674 0.000512 
AR1Egarch11Skt 0.028130 0.0002779 2.713E-07 0.01299 0.000386 0.01667 0.000521 
EGarch11Skt 0.028791 0.0002780 2.743E-07 0.01297 0.000388 0.01667 0.000524 
ARMA11Egarch22GED 0.023115 0.0002769 2.227E-07 0.01307 0.000357 0.01664 0.000472 
EGarch11GED 0.028731 0.0002757 2.290E-07 0.01304 0.000354 0.01660 0.000479 
EGarch11N 0.028718 0.0002757 2.143E-07 0.01306 0.000349 0.01660 0.000463 
ARMA11GJR33Skt 0.020429 0.0002777 1.690E-07 0.01304 0.000272 0.01667 0.000411 
AR1Gjr22Skt 0.008727 0.0002767 1.729E-07 0.01299 0.000288 0.01663 0.000416 
Gjr33Skt 0.021404 0.0002763 1.692E-07 0.01299 0.000271 0.01662 0.000411 
Gjr11Skt 0.020781 0.0002764 1.689E-07 0.01299 0.000273 0.01663 0.000411 
Gjr11St-t 0.020110 0.0002760 1.692E-07 0.01300 0.000273 0.01661 0.000411 
AR1Gjr11GED 0.019125 0.0002759 1.688E-07 0.01302 0.000270 0.01661 0.000411 
Gjr11GED 0.019908 0.0002757 1.685E-07 0.01302 0.000270 0.01661 0.000411 
Gjr33N 0.018225 0.0002759 1.697E-07 0.01301 0.000271 0.01661 0.000412 
ARMA11GJR22N 0.008162 0.0002776 1.706E-07 0.01309 0.000281 0.01666 0.000413 
Gjr11N 0.020052 0.0002758 1.678E-07 0.01301 0.000269 0.01661 0.000410 
ARMA11Aparch33Skt 0.008243 0.0002780 1.731E-07 0.01304 0.000289 0.01667 0.000416 
AR1Aparch22Skt 0.008754 0.0002766 1.730E-07 0.01299 0.000288 0.01663 0.000416 
Aparch22Skt 0.008964 0.0002765 1.727E-07 0.01298 0.000287 0.01663 0.000416 
Aparch33Skt 0.021544 0.0002763 1.691E-07 0.01299 0.000271 0.01662 0.000411 
AR1Aparch11Skt 0.019801 0.0002766 1.692E-07 0.01300 0.000274 0.01663 0.000411 
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Table 3.2.5. Devamı 
Aparch11Skt 0.020827 0.0002764 1.688E-07 0.01299 0.000272 0.01663 0.000411 
Aparch11St-t 0.020152 0.0002760 1.691E-07 0.01300 0.000272 0.01661 0.000411 
ARMA11Aparch-m11GED 0.017656 0.0002786 1.693E-07 0.01325 0.000267 0.01669 0.000411 
Aparch11Ged 0.019904 0.0002757 1.685E-07 0.01302 0.000270 0.01661 0.000411 
Aparch11N 0.020053 0.0002758 1.678E-07 0.01301 0.000269 0.01661 0.000410 
Igarch33Skt 0.007316 0.0002767 1.773E-07 0.01298 0.000304 0.01663 0.000421 
AR1Igarch22Skt 0.008869 0.0002771 1.759E-07 0.01299 0.000303 0.01665 0.000419 
Igarch22Skt 0.008889 0.0002769 1.760E-07 0.01298 0.000303 0.01664 0.000420 
ARMA11Igarch11Skt 0.020874 0.0002789 1.714E-07 0.01305 0.000294 0.01670 0.000400 
Ar1Igarch11Skt 0.020980 0.0002772 1.714E-07 0.01300 0.000293 0.01665 0.000414 
Igarch11Skt 0.021975 0.0002769 1.710E-07 0.01298 0.000293 0.01664 0.000414 
Igarch11St-t 0.021478 0.0002763 1.715E-07 0.01299 0.000293 0.01662 0.000414 
ARMA11Igarch11GED 0.020875 0.0002770 1.709E-07 0.01305 0.000293 0.01664 0.000413 
Igarch11GED 0.021611 0.0002759 1.706E-07 0.01301 0.000292 0.01661 0.000413 
Igarch11N 0.021846 0.0002761 1.701E-07 0.01300 0.000292 0.01662 0.000412 
AR1FIgarchBBM22St-t 0.012166 0.0002765 1.716E-07 0.01299 0.000303 0.01663 0.000414 
FIGarchBBM11Skt 0.012040 0.0002768 1.711E-07 0.01298 0.000302 0.01664 0.000414 
FIgarchBBM11St-t 0.011605 0.0002764 1.713E-07 0.01299 0.000302 0.01662 0.000414 
FIgarchBBM11GED 0.011802 0.0002759 1.707E-07 0.01301 0.000301 0.01661 0.000413 
FIgarchBBM11N 0.011863 0.000276 1.708E-07 0.01300 0.000302 0.01661 0.000413 

 
4. Conclusion 
 
Most linear time series models for prediction of returns descend from the AutoRe-
gressiv Moving Average (ARMA) and Generalized Autoregressiv Conditional Het-
eroskedastic (GARCH) models. Both concepts are useful in volatility modeling, but 
less useful in return prediction.  

Scientific prediction involves the spotting of past patterns or regularities and test-
ing them on recent observations. The data used to spot the patterns can therefore be 
called the training data. Parametric models like GARCH make use of the training 
data to modify the parameters in such a way that it fits best to the data. As a conse-
quence well structured models are able to model the data almost precisely. However 
in the attempt to predict the future values with the same model one actually assumes 
that the future results will follow the same characteristics, same patterns. It is also 
assumed that the reactions to factors not included in the model are similar in both 
the past and the future. This is the reason why GARCH models as parametric speci-
fications operate best under relatively stable market conditions. Although GARCH 
is explicitly designed to model time-varying conditional variances, GARCH models 
can fail to predict highly irregular phenomena, including wild market fluctuations 
(e.g., crashes and subsequent rebounds), and other highly unanticipated events that 
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can lead to significant structural change. The choice of the optimum sample size, the 
window size for p and q are still highly an art based on experience.  

In this study, in order to the estimation and forecasting performances of different 
GARCH processes, Ox 3.40 and its G@RCH 3.0 packages dedicated to GARCH 
models and many of its extensions by Laurent and Peters is used for analyzing the 
models. With open-source code are able to add or modify specifications, processes 
or graphics in the future.  

The (p,q) = (1,1) variant of all models are systematically tested with four different 
distributions, namely, Gaussian Normal, Student-t, Generalized Error Distribution 
(GED) and Skewed-t distribution. 94 models of higher order are unsystematically 
experimented to examine the effects on estimation and forecasting performances 
with an emphasis on Maximum Likelihood.  

Estimation results are evaluated on the basis of ML, Akaike, Schwarz, Shibata 
and Hannan-Quinn values, whereas forecasting results are ranked according to Min-
cer Zarnowitz regression R2, Root Mean Square Error, Mean Square Error and Mean 
Absolute Error value criteria. In comparing the estimation powers of models, we re-
strict our comments to student and skewed-t distributions. For optimizing maximum 
likelihood, skewed-t performs better than student-t for all models. On the other hand 
if we evaluate according to the other four criteria, by which more complicated mod-
els are penalized for the inclusion of additional parameters, skewed-t looses its ap-
parent advantage, because it requires an additional skewness parameter. Especially 
Hannan-Quinn test seems to judge according to the distribution rather than the 
model spesification and prefer student-t. We found that the choice of models is at 
least as important as the choice of distributions, because best performing models 
combined with both distributions found place in the front ranks, mostly succes-
sively.    

Log Likelihood results are consistent with aggregate results. Normal distribution 
estimates worse for all models. Higher orders alone improve results more than 
ARMA specifications alone. Together they improve more but the marginal benefit 
decreases. As a result we can conclude that, based on the maximum likelihood, the 
more complex a model is the better it fits to the data.  

Combined rankings allow for the conclusion that maximum likelihood is a 
consistent evaluation criterion. While Akaike, Shibata, Schwarz and Hannan-Quinn 
may result in complete different rankings, the aggregate results are consistent with 
that of the maximum likelihood.  

If skewed-t or student-t distributions are used, it is always possible to increase the 
likelihood by adding more tailored processes, implying a better fit to the data on the 
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basis of numbers. GARCH models in general succeed in reproducing volatility 
clustering, persistence, leverage effect and fat tail behavior of real world data.  

For forecasting, the best models for estimation are not necessarily the best ones. 
The same thing is also true for the distributions. The specification of the model has a 
more clear and predictable effect on Mincer-Zarnowitz regression R2. As explained 
by Laurent and Peters (2002) the Mincer-Zarnowitz regression has been largely used 
to evaluate forecasts in the conditional mean. For the conditional variance, it is 
computed by regressing the forecasted variances on the actual variances.  

GED and skewed-t distributions performed well in predictions but it is not 
possible to favor any distribution. While RMSE and MAE ranked the t-distributions 
better, MSE favored GED and puts t distributions to the bottom. R2 made no 
implications on the distribution. Normal distributions give consistently moderate 
results. In general simpler models with less parameter perform better forecasts. 
RMSE, MSE and MAE give very different rankings in cross comparison. However 
in general mean specifications restrict the flexibility of all models and result in a ge-
neral trend and can not capture the outliers. 

The size of the sample is a crucial factor affecting the forecasting performance. 
Therefore we believe that most models would behave differently with different sam-
ple sizes which could be the topic of a separate research.  
 
 
 

Volatilite Değerleme ve Tahmini Için ARCH ve GARCH Modellerinin Kullanımı 
 
Özet: Bu çalışma, 9 yıllık günlük verilere dayanarak IMKB 100 endeksinin vola-
tilitesini değerlendirmek ve tahmin etmek için, her biri dört ayrı dağılımla denenen, 
ARMA özellikleri eklenebilen 11 değişik ARCH modelinin performansını sunmaktadır. 
Elde edilen sonuçlara göre, aynı dağılım kullanılırsa, kısmi entegre edilmiş asimetrik 
modeller bu özelliğe sahip olmayan orjinal versiyonlarından daha iyi volatilite değer-
lemesi yapabilmektedir.  Çarpık-t ve Student-t dağılımlarının kullanılması modelin 
veriye daha uyumlu olmasını sağlamaktadır. Sonuç olarak, belirli bir model veya da-
ğılımın kullanılmasının volatilite tahmininde açık bir iyileşmeye yol açmadığı gözlen-
miştir. 
Anahtar Kelimeler: GARCH; EGARCH; GJR; APARCH; IGARCH; FIGARCH; 
FIAPARCH; FIEGARCH; HYGARCH; ARMA; GED; Skewed-t; Ox; G@RCH 
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